История и определение хроматографического метода

Цвет М.С. (1872-1919 г.г.)
Цвет М.С. (1872-1919 г.г.)

 

ВВЕДЕНИЕ

                            

Впервые термин "хроматография" был использова российским биологом Михаилом Семеновичем Цветом для описания разработанного им метода разделения компонентов хлорофила на бумаге. Это произошло 21 марта 1903 г ., когда  Михаил Семенович Цвет, в то время работавший в должности ассистента (официально - в должности внештатного лаборанта) кафедры анатомии и физиологии растений Варшавского университета, прочитал свой знаменательный доклад "О новой категории адсорбционных явлений и о применении их к биологическому анализу" (Труды Варшавского общества естествоиспытателей. Отд. биологии. 1903. Т. 14. С. 1-20). Эксперименты в области адсорбции, приведшие в итоге к открытию хроматографии, ученый начал двумя годами раньше - в возрасте 28 лет. Подробное изложение принципов и возможностей своего хроматографического метода он дал в 1906 г . в двух статьях на немецком языке и в книге 1910 г . "Хромофиллы в растительном и животном мире".

По экспертным оценкам, хроматография относится к 20 выдающимся открытиям прошедшего столетия, которые в наибольшей степени преобразовали науку, а через нее определили уровень развития техники и промышленности, цивилизации в целом. Хотя по образованию и роду занятий Цвет был ботаником, результаты его открытия столь значимы для всех естественных наук, что Федерация европейских химических обществ, например, приводит имя Цвета, наряду с четырьмя другими русскими именами - Ломоносова, Менделеева, Бутлерова и Семенова, - в числе ста выдающихся химиков прошлого.

В конце своего 100-летия хроматография представляет собой:

самый распространенный и совершенный метод разделения смесей атомов, изотопов, молекул, всех типов изомерных молекул, включая и оптические изомеры, макромолекул (синтетических полимеров и биополимеров), ионов, устойчивых свободных радикалов, комплексов, ассоциатов, микрочастиц;

уникальный метод качественного и количественного анализа сложных многокомпонентных смесей:

самостоятельное научное направление и важный физико-химический метод исследования и измерения;

препаративный и промышленный метод выделения веществ в чистом виде;

мощную отрасль научного приборостроения.

Ни один аналитический метод не может конкурировать с хроматографией по универсальности применения и эффективности разделения самых сложных многокомпонентных смесей. На современных газохроматографических капиллярных колонках в одном эксперименте могут быть разделены, количественно и качественно определены более 1000 индивидуальных компонентов, например, в бензиновых фракциях нефти; двумерный электрофорез позволяет увидеть до 2000 белков в биологических объектах или пептидов в гидролизатах белков. Только благодаря сочетанию разнообразных методов хроматографии и капиллярного электрофореза стала возможной расшифровка нуклеотидной последовательности ДНК и завершение работ по программе "Геном человека". Используя хроматографию, можно определить содержание супертоксикантов, в частности, полихлорированных диоксинов в объектах окружающей среды при крайне низких концентрациях этих веществ (10-10%).

ОПРЕДЕЛЕНИЕ ХРОМАТОГРАФИИ

Хроматография изучает термодинамику состояния двухфазных систем газ-жидкость, жидкость-жидкость, жидкость-твердое тело, сверхкритическое и жидкокристаллическое состояние веществ, исследует природу межмолекулярных взаимодействий, кинетику процессов внутреннего и межфазного массообмена, процессы комплексообразования, ассоциации и образования соединений включения, стереохимию органических соединений и многое другое.

В связи с исключительной многогранностью понятия "хроматография" оно не может быть охвачено одним единственным определением. В категориях "явление, процесс, метод, наука" хроматографию предложено определять как

явление образования, движения и изменения концентрационных зон веществ (частиц) в условиях массообмена между несмешивающимися и движущимися относительно друг друга фазами или на границе раздела этих фаз;

процесс дифференцированного многократного перераспределения веществ или частиц между несмешивающимися и движущимися относительно друг друга фазами, приводящий к обособлении) концентрационных зон индивидуальных

компонентов исходных смесей этих веществ или частиц;

метод разделения смесей веществ или частиц, основанный на различии в скоростях их перемещения в системе несмешивающихся и движущихся относительно друг друга фаз;

наука о межмолекулярных взаимодействиях и переносе молекул или частиц в системе несмешивающихся и движущихся относительно друг друга фаз.

В научной литературе встречаются и другие определения хроматографии, однако любое из них должно обязательно содержать среди отличительных видовых признаков упоминание о переносе веществ (частиц) в системе несмешивающихся и движущихся друг относительно друга фаз. Наличие как минимум двух фаз и их относительное движение, то есть динамика процесса, -неотъемлемые признаки хроматографии.

В общем случае хроматография это наука о принципах и методах разделения, количественного и качественного определения веществ, используя их различия (размер, заряд, массу, полярность и т.д.) в потоке на границе нескольких гетерогенных сред (газ и твердое тело, жидкость и твердое тело, газ и жидкость, несмешиващиеся жидкости и т.д.).

В связи с многогранностью данной науки существует несколько классификаций методов хроматографического разделения окоторых более подробно написано в разделе Классификация методов хроматографии.

 

 Рисунок 1 Пример жидкостной хроматографии смеси стандартов синтетических фосфолипидов (1) и образца грубого липддного экстракта из клеточной мембраны эритроцитов человека(2) на нормально фазной колонке при детектировании лазерным светорассеивающим детектором.НЛ – нейтральные липиды; ФЭ – фосфатидилэтаноламин; ФС – фосфатидилсерин; ФХ – фосфатидилхолин; СМ – сфингомиелин.

 

Рисунок 2. Пример газовой хроматографии: скоростной анализ паров взрывчатых веществ на поликапиллярной колонке при температуре 170°С.
Поликапиллярная колонка длиной всего 22 см позволяет за 2.5 минуты обнаружить и идентифицировать следовые количества паров взрывчатых веществ: 1 - 2,6-динитротолуол, 2 - 2.4-динитротолуол. 3 - 2,4,6-тринитротолуол, 4 - 3,4,5-трининитротолуол, 5 - 2.3,4-тринитротолуол, 6 - гексоген. 7 - тетрил.